我们引入了来自多个机器人手的对象的神经隐式表示。多个机器人手之间的不同抓地力被编码为共享的潜在空间。学会了每个潜在矢量以两个3D形状的签名距离函数来解码对象的3D形状和机器人手的3D形状。此外,学会了潜在空间中的距离度量,以保留不同机器人手之间的graSps之间的相似性,其中根据机器人手的接触区域定义了grasps的相似性。该属性使我们能够在包括人手在内的不同抓地力之间转移抓地力,并且GRASP转移有可能在机器人之间分享抓地力,并使机器人能够从人类那里学习掌握技能。此外,我们隐式表示中对象和grasps的编码符号距离函数可用于6D对象姿势估计,并从部分点云中掌握触点优化,这可以在现实世界中启用机器人抓握。
translated by 谷歌翻译
本文介绍了WiFi传感器 - 机器人(WSR)工具箱,一个开源C ++框架。它使团队中的机器人能够在彼此获得相对的轴承,即使在非思考(NLOS)设置中也是机器人中非常具有挑战性的问题。通过分析其传送的WiFi信号的阶段,因为机器人遍历环境来实现。基于我们的先前作品中开发的理论的这种能力是首次提供的作为OpenSource工具。它是由于缺乏使用机器人的本地资源(例如WiFi)来在NLOS中感测的易于部署的解决方案。这对多个机器人团队中的本地化,ad-hoc机器人网络和安全性有影响。工具箱专为使用商品硬件和车载传感器的机器人平台上分布式和在线部署而设计。我们还释放数据集,展示其在NLOS中的性能以及用于多机器人本地化USECASE的MOLICE中的表现。经验结果表明,我们的工具箱的轴承估计达到了5.10度的平均精度。在室内办公环境中的硬件部署中,这分别导致LOS和NLOS设置中的0.5米和0.9米的中值误差为0.5米和0.9米。
translated by 谷歌翻译
在本文中,我们推导了机器人来测量相对方向或到达角度(AOA)的新能力,以在非视线和未映射的环境中运行的其他机器人,而无需外部基础架构。我们通过捕获WiFi信号在从发送到接收机器人时遍历的所有路径来这样做,这是我们术语AOA简档。当机器人在3D空间中移动时,关键直觉是“在空中模拟空气中的天线阵列”,一种类似于合成孔径雷达(SAR)的方法。主要贡献包括i)一个框架,以适应任意3D轨迹的框架,以及所有机器人的持续移动性,而计算AOA配置文件和II)随附的分析,其提供了作为机器人轨迹的函数的AOA估计方差的较低限制基于Cramer Rao绑定的几何。这是一个关键的区别与先前的SAR的工作,限制机器人移动到规定的运动模式,不概括到3D空间,和/或在数据采集时段期间需要将机器人发送到静态。我们的方法导致更准确的AOA配置文件,从而更好地估计,并正式地将该观察表征为轨迹的信息性;我们推导出封闭形式的可计算量。所有理论发展都是通过广泛的模拟和硬件实验证实的。我们还表明,我们的配方可以与现成的轨迹估计传感器一起使用。最后,我们展示了我们系统对多机器人动态集合任务的表现。
translated by 谷歌翻译
我们在执行姿势图优化(PGO)的机器人团队中提供了一份新颖的合作框架,该团队解决了解决多机器人SLAM的两个重要挑战:i)通过在不使用地图的情况下通过活动的Rendezvous实现信息交换“按需”的两个重要挑战机器人的位置和ii)拒绝偏远的测量。我们的主要洞察力是利用机器人之间的通信信道中存在的相对位置数据来提高PGO的基地精度。我们开发一种用于将信道状态信息(CSI)与多机器人PGO集成的算法和实验框架;它是分布式的,适用于低灯或无特色环境,传统传感器经常失败。我们对实际机器人提供了广泛的实验结果,并观察了使用活跃的Rendezvous导致在地面真理姿势错误的64%减少中,使用CSI观察援助异常拒绝将地面真理造成错误减少32%。这些结果表明,将通信作为新颖的Slam传感器集成的可能性。
translated by 谷歌翻译